

Nonlinear Model Predictive Control for Solid-Oxide Electrolysis Cell Systems

Vibhav Dabadghao¹, Douglas Allan², Michael Li¹, John Eslick², Jinliang Ma², Steve Zitney²³, Debangsu Bhattacharyya³, Lorenz Biegler¹

¹Carnegie Mellon University, ²National Energy Technology Laboratory, ³West Virginia University

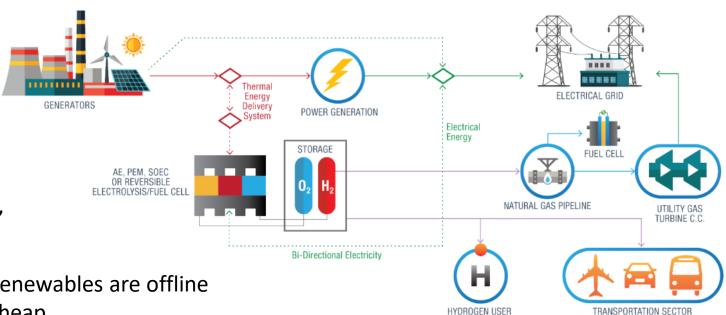
AIChE Annual Conference November 17, 2022

Tightly-coupled Integrated Energy Systems (IES) play an important role in load-balancing

 Intermittent renewable energy adds volatility to electricity prices

 IES can leverage capabilities of diverse energy generators to provide heat, power, mobility and storage

Produce hydrogen while electricity is cheap

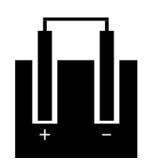


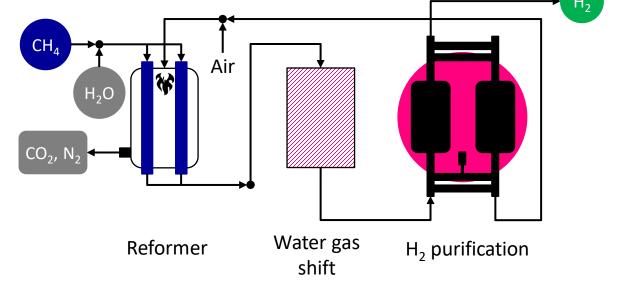
How fast can these systems switch between operating points?

Hydrogen production will play a crucial role in the energy transition and decarbonization

 Most industrial hydrogen is produced through steam-methane reforming, which uses fossil fuels as feedstock

 Water electrolysis is a potential replacement, producing no direct greenhouse gas emissions when renewable energy is used

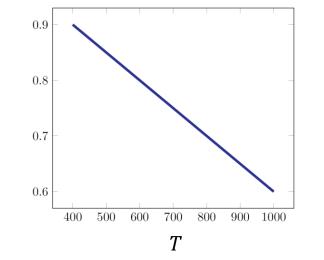




Nernst potential decreases with increasing reaction temperature

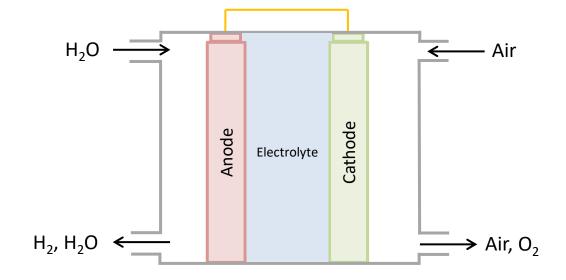
The minimum potential difference at which electrolysis can occur

$$E_{\text{cell}} = E^0 - \frac{RT}{nF} \ln Q$$



Solid-oxide electrolysis cells (SOECs) are candidates for efficient electrolysis

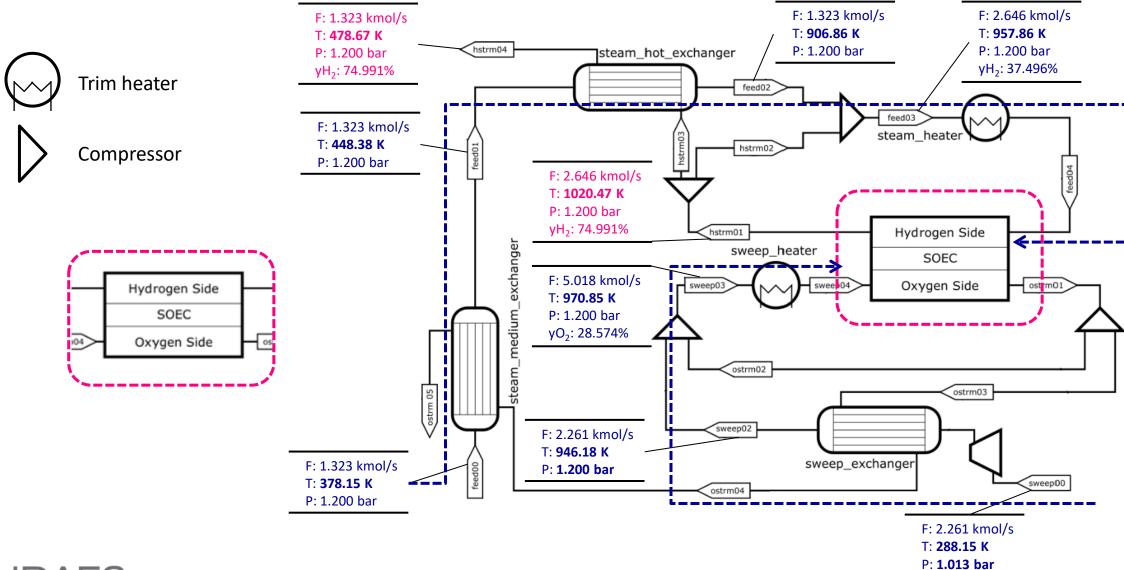
- SOECs operate at 600 °C to 1000 °C, much higher temperatures than other electrolysis technologies
- High temperature operation comes with significant drawbacks
 - Additional heat exchange equipment
 - Good thermal insulation
 - Careful control during transition between operating points



Electrolyte: hard, non-porous ceramic material

Dynamics, health modeling and **advanced process control** are needed to improve SOEC operational performance and thermal management while reducing cell degradation during frequent transients

Process flow diagram of SOEC flowsheet



Dynamic SOEC modeling as an integration of submodules

Anode (fuel) channel model

$$\frac{\partial C_{i,\text{ac}}}{\partial t} = -\frac{\partial}{\partial z} \left(C_{i,\text{ac}} u_{z,\text{ac}} \right) - \frac{J_{i,\text{ac}}}{x_{\text{in,an}}}$$

$$C_{i,\text{ac}} = C_{\text{total,ac}} y_{i,\text{ac}}$$

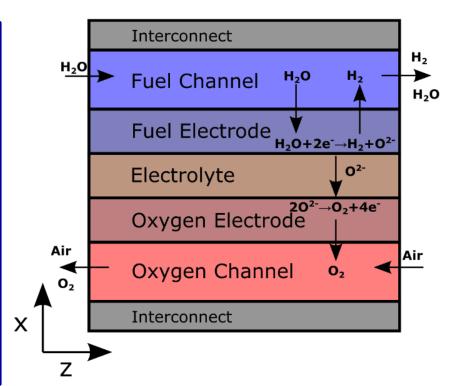
$$C_{\text{total,ac}} = f \left(P_{\text{ac}}, T_{\text{ac}}, y_{i,\text{ac}} \right)$$

$$\sum y_{i,\text{ac}} - 1 = 0$$

$$J_{i,\text{ac}} = -\mathcal{D}_{i,\text{eff}} \frac{\partial C_{i,\text{an}}}{\partial x} \mid_{x = x_{\text{in,an}}}$$

$$\mathcal{D}_{\text{H}_2}, \mathcal{D}_{\text{H}_2}\text{O}$$

C: molar density, J: flux, D: diffusivity, ac: anode channel, an: anode, i: species



Nonisothermal, planar SOEC

Fuel electrode: water is reduced into hydrogen

Oxygen electrode: electrode to which O²⁻ ions diffuse

Allan et al. (Under review)

Dynamic SOEC modeling as an integration of submodules

Anode (fuel electrode) model

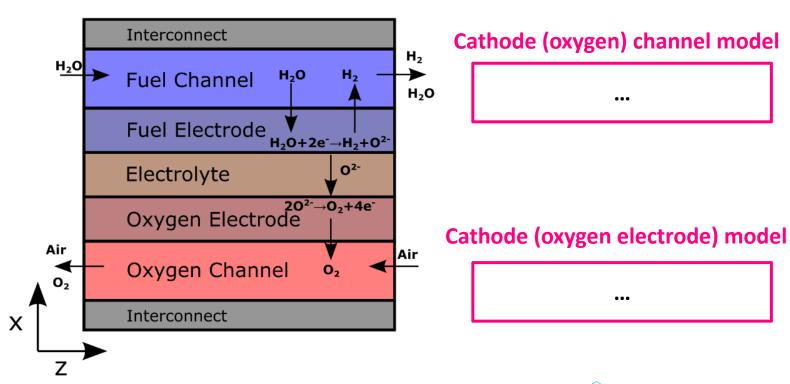
$$\varepsilon_{\rm an} \frac{\partial C_{i,\rm an}}{\partial t} = \frac{\partial^2}{\partial z^2} \left(\mathcal{D}_{i,\rm eff} C_{i,\rm an} \right)$$

$$C_{i,\mathrm{an}} = C_{\mathrm{total,an}} y_{i,\mathrm{an}}$$

$$C_{\text{total,an}} = f(P_{\text{an}}, T_{\text{an}}, y_{i,\text{an}})$$

$$\sum y_{i,\mathrm{ac}} - 1 = 0$$

C: concentration, J: flux, D: diffusivity, ac: anode channel, an: anode, i: species



Electrochemical model

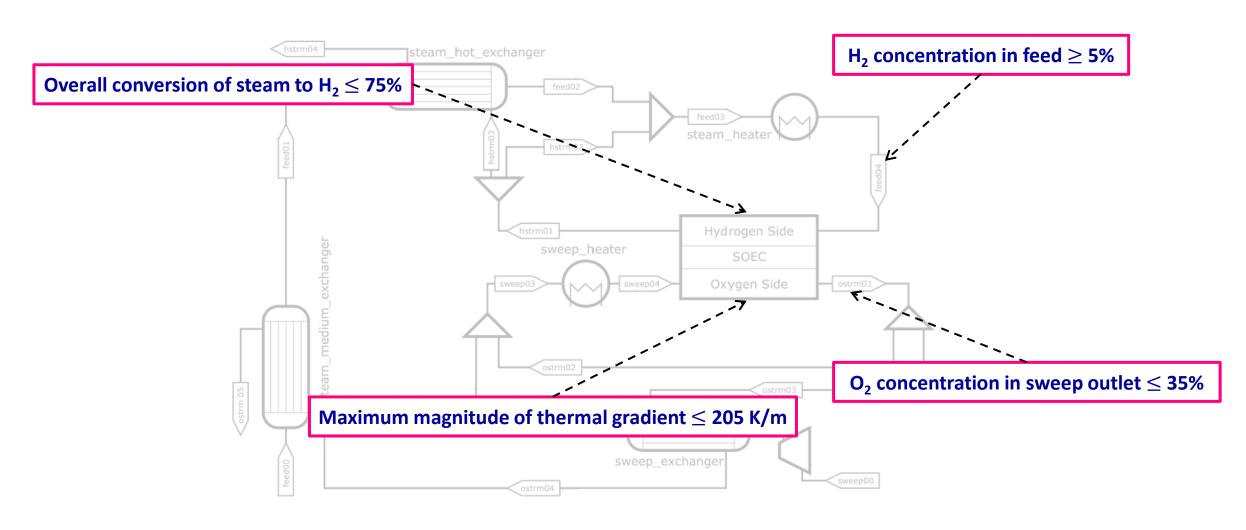
- Activation polarization at the cathode and anode
- Ohmic polarization

•••

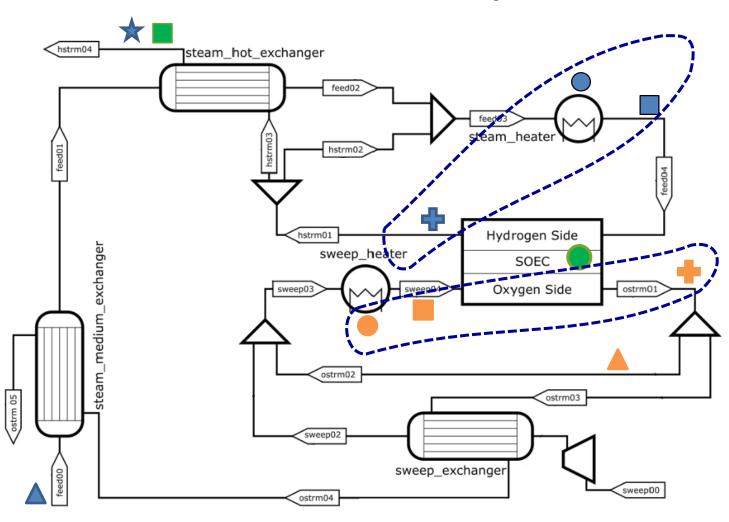
•••

Allan et al. (Under review)

System performance constraints



Classical process control pairings



Nonlinear Model Predictive Control (NMPC) can handle highly interactive manipulated variables

NMPC framework developed for setpoint transition using the same 7 manipulated variables

$$f_{\text{obj}} = \sum_{i=0}^{N} \rho_{\text{H}_2} \left(y_i - y_i^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \rho_j \left(u_{ij} - u_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{k \in K} \rho_k' \left(x_{ik} - x_{ik}^R \right)^2 + \sum_{i=1}^{N} \rho' \left(\nu_i - \nu_{i-1} \right)^2 + \rho_s \sum_{i=0}^{N} \sum_{z=1}^{Z_L} \left(p_{iz} + n_{iz} \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij} - y_{ij}^R \right)^2 + \sum_{i=0}^{N} \sum_{j \in J} \left(p_{ij}$$

Trajectory tracking of H₂ production rate Deviations of manipulated (u_{ij}) and controlled variables (x_{ik}) from reference values

Rate of change penalties on trim heater duties

 ℓ_{1} -penalties for temperature gradient constraints

To prevent thermal degradation over time, the magnitude of the temperature gradient along the cell length (z-direction) is constrained to be below 205 K/m

$$\frac{dT}{dz} - 205 \le p$$
 and $-\frac{dT}{dz} - 205 \le n$

An ℓ_1 -penalty relaxation treats them as soft constraints with non-negative slack variables p and n penalized in the objective

Dynamic simulation and control solution approaches to compare classical control with NMPC

Case study: ramp H₂ production

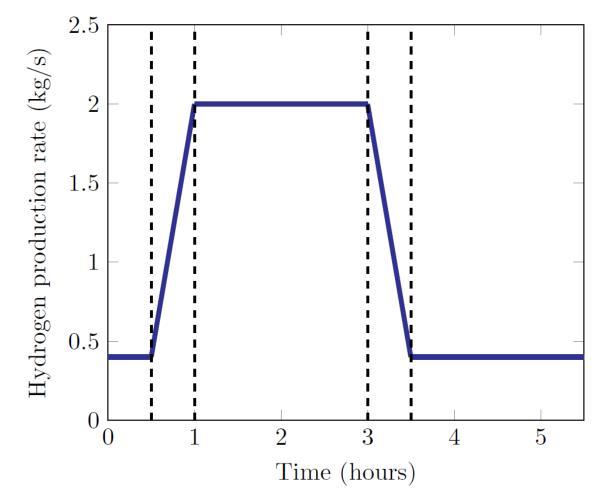
- Minimum (0.4 kg/s) to maximum (2.0 kg/s) and back to minimum
- Each ramp performed over 30 min followed by 2 hrs of settling time

Solution approach

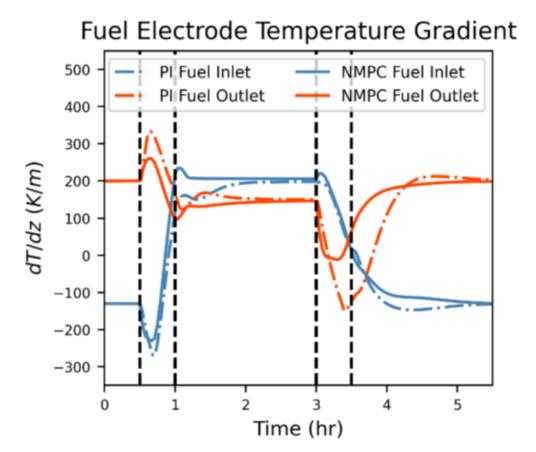
- Classical: PETSc variable step implicit Euler DAE solver
- NMPC: Full-discretization NLP with IPOPT solver

Problem size

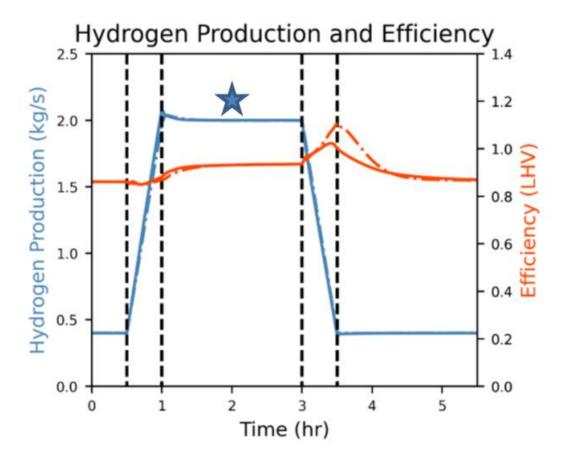
- Approximately 16000 equations and variables
- Average solution time of 35.5s for a prediction horizon of 750s



Dynamic simulation and control results

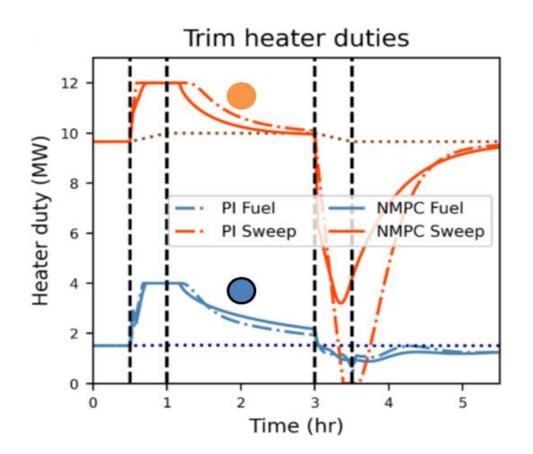


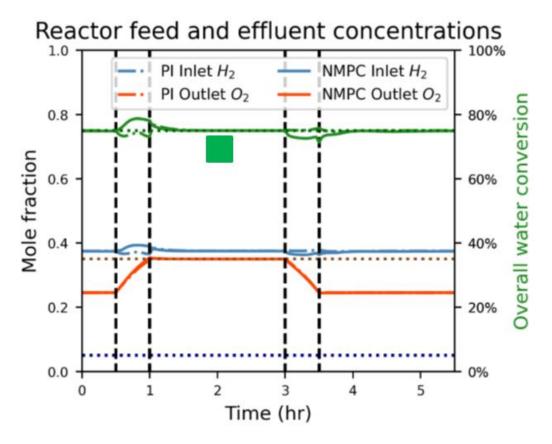
NMPC contains thermal gradients significantly better than sophisticated classical control



- Hydrogen production tracking is identical
- Efficiency for NMPC is lower during transients as it is takes into account the restriction of thermal degradation

Dynamic simulation and control results

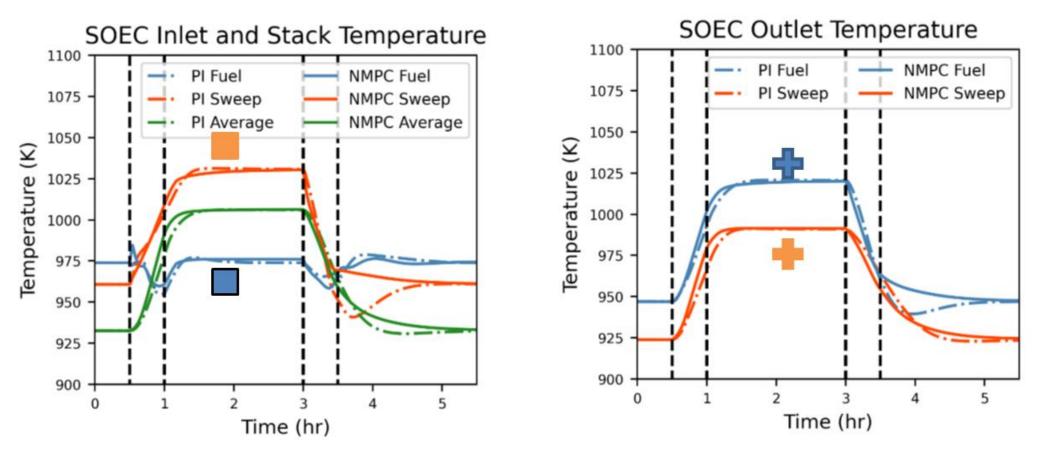




Settling of trim heater duties is faster with NMPC

Performance constraints are satisfied, slight violations during transients

Dynamic simulation and control results



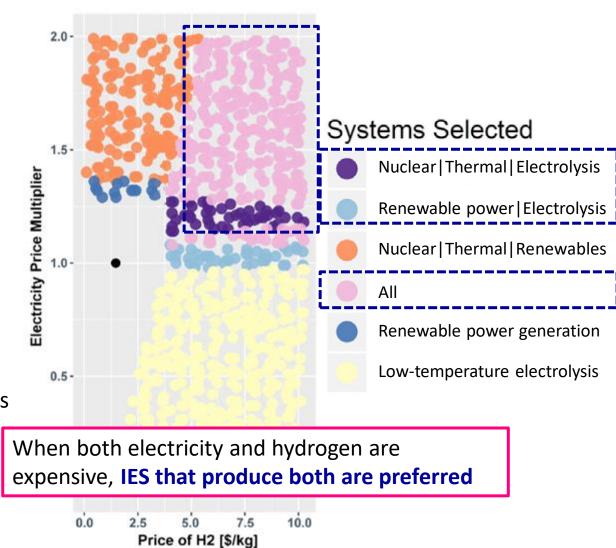
NMPC yields a quicker response in terms of settling of SOEC inlet, outlet and stack temperatures

Conclusions, impacts and future directions

- IDAES offers an ecosystem of large-scale dynamic models for integrated energy systems, as well as classical and advanced control capabilities
- Setpoint tracking NMPC can restrict temperature gradients more effectively compared to classical control
- Matching the tracking performance of NMPC requires a sophisticated approach with cascade control – NMPC is suited to handle complex multiinput multi-output systems

Future work

- **Economic NMPC** with more general objective functions
- Effective mode switching between hydrogen production and power generation modes



idaes.org

github.com/IDAES/idaes-pse

We graciously acknowledge funding from the U.S. Department of Energy, Office of Fossil Energy, through the Crosscutting/Simulation-Based Engineering Program.

The IDAES Technical Team:

- National Energy Technology Laboratory: David Miller, Tony Burgard, John Eslick, Andrew Lee, Miguel Zamarripa, Jinliang Ma, Dale Keairns, Jaffer Ghouse, Peng Liu, Ben Omell, Chinedu Okoli, Richard Newby, Maojian Wang
- Sandia National Laboratories: John Siirola, Bethany Nicholson, Carl Laird, Michael Bynum, Jordan Jalving, Emma Johnson, Katherine Klise, Miranda Mundt
- Lawrence Berkeley National Laboratory: Deb Agarwal, Dan Gunter, Keith Beattie, John Shinn, Hamdy Elgammal, Joshua Boverhof, Karen Whitenack, Oluwamayowa Amusat
- Carnegie Mellon University: Larry Biegler, Nick Sahinidis, Chrysanthos Gounaris, Ignacio Grossmann, Owais Sarwar, Natalie Isenberg, Chris Hanselman, Marissa Engle, Qi Chen, Cristiana Lara, Robert Parker, Ben Sauk, Vibhav Dabadghao, Can Li, David Molina Thierry
- West Virginia University: Debangsu Bhattacharyya, Paul Akula, Anca Ostace, Quang-Minh Le
- University of Notre Dame: Alexander Dowling, Xian Gao

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.